Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Kidney Dis (Basel) ; 5: 1-10, 2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1263967

ABSTRACT

BACKGROUND: The COVID-19 pandemic has brought increased focus on hydroxychloroquine (HCQ), as doctors, the medical community, and policymakers around the world attempt to understand how the risks of HCQ weigh against unknown benefits. We aim to evaluate the effects of HCQ on cardiac conduction, thus contributing to the global understanding of implications of HCQ use. METHODS: We reviewed 717 cases of nonmalaria patients treated with HCQ (302) or without HCQ (415) in our hospital from 2008 to 2019, analyzed the cardiac conduction recorded by electrocardiogram (122 vs. 180) including heart rate (HR), PR, and corrected-QT (QTc) intervals, and explored the relationship of cardiac conduction with age, HCQ dosage, HCQ duration, sex, and primary diseases in HCQ users. RESULTS: The all-cause mortality is similar between HCQ and non-HCQ groups (4.0 vs. 4.3%, p = 0.85). Patients aged 45 years or older, not younger ones, have lower HR (80.1 ± 1.7 vs. 85.7 ± 1.8 bpm, p = 0.03) but longer PR (163 ± 3.4 vs. 146.6 ± 4.2 ms, p = 0.003) and QTc (417.8 ± 3.8 vs. 407.7 ± 2.7 ms, p = 0.03) in HCQ than those in non-HCQ. The age in the HCQ group is positively correlated with PR (R = 0.31, p < 0.01) and QTc (R = 0.34, p < 0.01) but not HR. HR, PR, and QTc are not related to HCQ dosage (0.1-0.6 g/day), HCQ duration (0.2-126 months), sex, primary diseases, and repeated exams. CONCLUSION: Age is the most important risk factor of HCQ on cardiac conduction in nonmalaria patients. Electrocardiogram monitoring is suggested in aged patients due to the effects of HCQ on HR, PR, and QTc.

3.
Adv Mater ; 32(43): e2004901, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-756243

ABSTRACT

The COVID-19 pandemic has taken a significant toll on people worldwide, and there are currently no specific antivirus drugs or vaccines. Herein it is a therapeutic based on catalase, an antioxidant enzyme that can effectively breakdown hydrogen peroxide and minimize the downstream reactive oxygen species, which are excessively produced resulting from the infection and inflammatory process, is reported. Catalase assists to regulate production of cytokines, protect oxidative injury, and repress replication of SARS-CoV-2, as demonstrated in human leukocytes and alveolar epithelial cells, and rhesus macaques, without noticeable toxicity. Such a therapeutic can be readily manufactured at low cost as a potential treatment for COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Betacoronavirus/drug effects , Catalase/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Anti-Inflammatory Agents/pharmacokinetics , Antioxidants/pharmacokinetics , Betacoronavirus/physiology , COVID-19 , Catalase/pharmacokinetics , Cell Line , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Leukocytes/drug effects , Leukocytes/metabolism , Leukocytes/virology , Macaca mulatta , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , SARS-CoV-2 , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL